Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanotechnology ; 25(20): 205301, 2014 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-24784353

RESUMO

We fabricate site-controlled, ordered arrays of embedded Ga nanoparticles on Si, using a combination of substrate patterning and molecular-beam epitaxial growth. The fabrication process consists of two steps. Ga droplets are initially nucleated in an ordered array of inverted pyramidal pits, and then partially crystallized by exposure to an As flux, which promotes the formation of a GaAs shell that seals the Ga nanoparticle within two semiconductor layers. The nanoparticle formation process has been investigated through a combination of extensive chemical and structural characterization and theoretical kinetic Monte Carlo simulations.

2.
Nanotechnology ; 23(31): 315301, 2012 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-22796874

RESUMO

Ion beam irradiation has previously been demonstrated as a method for creating nanowire-like semiconductor nanostructures, but no previous studies have reported on the electrical properties of those structures. In this work we describe the creation and in situ transmission electron microscopy electrical characterization of nanoscale InAs spike structures on both InAs and InP substrates fabricated using a focused ion beam erosion method. Those InAs 'nanospikes' are found to possess internal structures with varying amounts of ion damaged and single crystalline material. Nanospike electrical behavior is analyzed with respect to model electronic structures and is similar to cases of barrier limited conduction in nanowires. The different electrical responses of each nanospike are found to be the result of variation in their structure, with the conductivity of InAs nanospikes formed on InAs substrates found to increase with the degree of nanospike core crystallinity. The conductivity of InAs nanospikes formed on InP substrates does not show a dependence on core crystallinity, and may be controlled by the other internal barriers to conduction inherent in that system.

3.
Nanotechnology ; 23(13): 135401, 2012 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-22421025

RESUMO

We report on the effects of patterning and layering on multilayer InAs/GaAs(001) quantum dot structures laterally ordered using an in vacuo focused ion beam. The patterned hole size and lateral pattern spacing affected the quantum dot size and the fidelity of the quantum dots with respect to the lateral patterns. 100% pattern fidelity was retained after six layers of dots for a 9.0 ms focused ion beam dwell time and 2.0 µm lateral pattern spacing. Analysis of the change in quantum dot size as a function of pattern spacing provided a means of estimating the maximum average adatom surface diffusion length to be approximately 500 nm, and demonstrated the ability to alter the wetting layer thickness via pattern spacing. Increasing the number of layers from six to 26 resulted in mound formation, which destroyed the pattern fidelity at close pattern spacings and led to a bimodal quantum dot size distribution as measured by atomic force microscopy. The bimodal size distribution also affected the optical properties of the dots, causing a split quantum dot photoluminescence peak where the separation between the split peaks increased with increasing pattern spacing.

4.
Nanotechnology ; 22(35): 355302, 2011 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-21817782

RESUMO

Ion beam irradiation has been examined as a method for creating nanoscale semiconductor pillar and cone structures, but has the drawback of inaccurate nanostructure placement. We report on a method for creating and templating nanoscale InAs spikes by focused ion beam (FIB) irradiation of both homoepitaxial InAs films and heteroepitaxial InAs on InP substrates. These 'nanospikes' are created as In droplets, formed due to FIB irradiation, act as etch masks for the underlying InAs. By pre-patterning the InAs to influence In droplet movement, nanospike locations on homoepitaxial InAs may be controlled with limited accuracy. Creating nanospikes using an InAs/InP heterostructure provides an additional measure of control over where the spikes form because nanospikes will not form on exposed regions of InP. This effect may be exploited to accurately control nanospike placement by pre-patterning an InAs/InP heterostructure to control the location of the InAs/InP interface. Using this heterostructure templating method it is possible to accurately place nanospikes into regular arrays that may be useful for a variety of applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...